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Mistakes in Proofs

 The most common errors are mistakes in

arithmetic and basic algebra.

 Even professional mathematicians make such

errors, especially when working with

complicated formulae

Whenever you use such computations you should

check them as carefully as possible.
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Mistakes in Proofs

 Each step of a mathematical proof needs to be

correct and the conclusion needs to follow

logically from the steps that precede it.

Many mistakes result from the introduction of

steps that do not logically follow from those that

precede it.

Lecture 7

3



Exercise 

What is wrong with this famous supposed 

"proof" that 1 = 2?
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Solution

Every step is valid except for one, step 5

where we divided both sides by a - b.

The error is that a - b equals zero; division

of both sides of an equation by the same

quantity is valid as long as this quantity is

not zero.
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What is wrong with this "proof" ?
"Theorem:" If n2 is positive, then n is positive.

"Proof:" Suppose that n2 is positive. Because

the conditional statement "If n is positive,

then n2 is positive" is true, we can conclude

that n is positive.
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Solution
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What is wrong with this "proof" ?
"Theorem:" If n is not positive, then n2 is not 
positive.

"Proof:" Suppose that n is not positive. 

Because the conditional statement "If n is 

positive, then n2 is positive" is true, we 

can conclude that n2 is not positive.
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Solution
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Begging the question

Many incorrect arguments are based on a

fallacy called Begging the question. This

fallacy occurs when one or more steps of a

proof are based on the truth of the statement

being proved.

In other words, this fallacy arises when a

statement is proved using itself, or a statement

equivalent to it. That is why this fallacy is also

called circular reasoning.
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Example

 Is the following argument correct?

 It supposedly shows that n is an even integer

whenever n2 is an even integer. Suppose that n2 is

even. Then n2 = 2k for some integer k. Let n = 2l

for some integer l. This shows that n is even.
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Solution

 This argument is incorrect. The statement "let n =

2l for some integer l" occurs in the proof. No

argument has been given to show that n can be

written as 2l for some integer l. This is circular

reasoning because this statement is equivalent to

the statement being proved, namely, "n is even."

Of course, the result itself is correct; only the

method of proof is wrong
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Word of Caution

Making mistakes in proofs is part of the learning

process.

When you make a mistake that someone else

finds, you should carefully analyze where you

went wrong and make sure that you do not make

the same mistake again.

 Even professional mathematicians make mistakes

in proofs.

More than a few incorrect proofs of important

results have fooled people for many years before

subtle errors in them were found
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Proof Methods and 
Strategy
Section 1.7



Section Summary

 Exhaustive proof

 Proof by Cases

 Existence Proofs

 Constructive

 Nonconstructive

 Disproof by Counterexample

 Nonexistence Proofs

 Uniqueness Proofs

 Proof Strategies



Example

Some theorems can be proved by

examining a relatively small number of

examples. Such proofs are called

exhaustive proofs, because these proofs

proceed by exhausting all possibilities. An

exhaustive proof is a special type of proof

by cases where each case involves

checking a single example. Lecture 7
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Example
Prove that the only consecutive positive

integers not exceeding 100 that are perfect

powers are 8 and 9. (An integer is a

perfect power if it equals na, where a is an

integer greater than 1)

We can prove this fact by showing that the 

only pair n, n + 1 of consecutive positive 

integers that are both perfect powers with 

n < 100 arises when n = 8
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Example

We can prove this fact by examining positive

integers n not exceeding 100, first checking

whether n is a perfect power, and if it is,

checking whether n + 1 is also a perfect power.

 A quicker way to do this is simply to look at all

perfect powers not exceeding 100 and checking

whether the next largest integer is also a perfect

power.
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Example
 The squares of positive integers not exceeding 100 are

1,4,9,16,25,36,49,64,81, and 100.A quicker way to do this is

simply to look at all perfect powers not exceeding 100 and

checking whether the next largest integer is also a perfect

power.

 The cubes of positive integers not exceeding 100 are 1,8, 27, 

and 64.

 The fourth powers of positive integers not exceeding 100 are 1, 

16, and 81.
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Example
 The fifth powers of positive integers not exceeding 100 are 1 

and 32.

 The sixth powers of positive integers not exceeding 100 are 1 

and 64.

 There are no powers of positive integers higher than the sixth 

power not exceeding 1 00, other than 1 .
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Example

Looking at this list of perfect powers not exceeding

100, we see that n = 8 is the only perfect power n for

which n + 1 is also a perfect power. That is, 23 = 8 and

32 = 9 are the only two consecutive perfect powers not

exceeding 1 00.
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Proof by Cases

 To prove a conditional statement of the form:

 Use the tautology

 Each of the implications                   is a case. 



Proof by Cases

Example: Let  a @ b = max{a, b} = a if a ≥ b, otherwise a @ b = max{a, b} = b.

Show that for all  real numbers a, b, c

(a @b) @ c = a @ (b @ c)

(This means the operation @ is associative.)

Proof: Let a, b, and c be arbitrary real numbers.

Then one of the following 6 cases must hold. 

1. a ≥ b ≥ c

2. a ≥ c ≥ b

3. b ≥ a ≥c

4. b ≥ c ≥a

5. c ≥ a ≥ b

6. c ≥ b ≥ a



Proof by Cases

Case 1: a ≥ b ≥ c

(a @ b) = a, a @ c = a, b @ c = b

Hence (a @ b) @ c = a = a @ (b @ c)

Therefore the equality holds for the first case.

A complete proof requires that the equality be shown to hold for 

all 6 cases. But the proofs of the remaining cases are similar. 

Try them.



Existence Proofs

 Proof of theorems of the form                   .

 Constructive existence proof: 

 Find an explicit value of c, for which  P(c) is true.

 Then                   is   true by Existential Generalization (EG).

Example: Show that there is a positive integer that can be  written 
as the sum of cubes of positive integers in two different ways:

Proof:        1729 is such a number since 

1729 = 103 + 93 = 123 + 13



Nonconstructive Existence Proofs

 In a nonconstructive existence proof, we assume no c exists 

which makes P(c) true and derive  a contradiction.

Example: Show that there exist irrational numbers x and y

such that xy is rational.

Proof: We know that √2 is irrational. Consider the 
number √2 √2 . If it is rational, we have two irrational 
numbers x and y with xy rational, namely x = √2       and 
y = √2. But if √2 √2  is irrational, then we can let  x = √2 
√2 and y = √2 so that                                                            

xy = (√2 √2  )√2 = √2 (√2 √2) = √2 2 = 2.



Counterexamples

 Recall                                     .  

 To establish that                  is true (or                is 

false) find a c such that P(c) is true or P(c) is 

false. 

 In this case c is called a counterexample to the 

assertion              .

Example: “Every positive integer is the sum of 

the squares of 3 integers.” The integer 7 is a 

counterexample.  So the claim is false.



Uniqueness Proofs

 Some theorems asset the existence of a unique element with a 

particular property, !x P(x). The two parts of a uniqueness proof 

are 

 Existence: We show that an element x with the property exists.

 Uniqueness: We show that if y≠x, then y does not have the 
property.

Example: Show that if a and b are real numbers and  a ≠0, then 
there is a unique real number r  such that  ar + b = 0.

Solution:

 Existence: The real number r = −b/a is a solution of ar + b = 0 
because a(−b/a) + b = −b + b =0.

 Uniqueness: Suppose that s is a real number such that   as + b = 
0. Then ar + b = as + b, where r = −b/a.  Subtracting b from 
both sides and dividing by a shows that r = s.  



Proof Strategies for proving 
p → q 

 Choose a method.

1. First try a direct method of proof.  

2. If this does not work, try an indirect method (e.g., try to prove 
the contrapositive).

 For whichever method you are trying, choose a strategy.

1. First try forward reasoning. Start with the axioms and known 

theorems and construct a sequence of steps that end in the 

conclusion.  Start with p and prove q, or start with ¬q and prove 

¬p.

2. If this doesn’t work, try backward reasoning. When trying to prove 

q,  find a statement p that we can prove with the  property p → q.



Backward Reasoning 
Example: Suppose that two people play a game taking turns removing, 1, 2, or 3 stones at

a time from a pile that begins with 15 stones. The person who removes the last stone

wins the game. Show that the first player can win the game no matter what the second

player does.

Proof: Let n be the last step of the game.

Step n:    Player1 can win if the pile contains 1,2, or 3 stones. 

Step n-1: Player2 will have to leave such a pile if the pile that he/she is faced with has 4 stones. 

Step n-2: Player1 can leave 4 stones when there are 5,6, or 7 stones left at the beginning of his/her 

turn. 

Step n-3: Player2 must leave  such a pile, if there are  8 stones . 

Step n-4: Player1 has to have a pile with 9,10, or 11 stones to ensure that there are 8 left. 

Step n-5: Player2 needs to be faced with  12 stones to be forced to leave 9,10, or 11. 

Step n-6: Player1 can leave  12 stones by removing 3 stones. 

Now reasoning forward, the first player can ensure a win by removing 3 stones and 

leaving 12.


