Discrete Mathematics CMP-101

Lecture 8

1

Sets, Subsets, Power Sets, Set Operations and Identities, Computer Representation of Sets

Abdul Hameed

http://informationtechnology.pk/

abdul.hameed@pucit.edu.pk

Lecture 8

Sets

Definition 1: A *set* is an unordered collection of objects

 Definition 2: Objects in a set are called *elements*, or *members* of the set.

■ $a \in A$, $a \notin A$

► $V = \{a, e, i, o, u\}$

 $\mathbf{D} = \{1, 3, 5, 7, 9\}$

or $O = \{x | x \text{ is an odd positive integer less than } 10\}$

or O = { $x \in \mathbb{Z}^+ | x \text{ is odd and } x < 10$ }

Lecture 8

Some Common Sets

▶ $N = \{0, 1, 2, 3, ...\},$ natural numbers

Z={...,-2, -1, 0, 1, 2, ...}, integers

Z⁺={1, 2, 3, ...}, positive integers

■ $\mathbf{Q} = \{p/q | p \in \mathbf{Z}, q \in \mathbf{Z}, and q \neq 0\}$, rational numbers

 $\mathbf{P}\mathbf{Q}^+ = \{x \in \mathbb{R} | x = p/q, \text{ for positive integers } p \text{ and } q\}$

R, real numbers

4

Remark

5

Note that the concept of a datatype, or type, in computer science is built upon the concept of a set. In particular, a datatype or type is the name of a set, together with a set of operations that can be performed on objects from that set. For example, boolean is the name of the set {O, I } together with operators on one or more elements of this set, zuch as AND, OR, and NOT.

Equal Sets

Definition 3: Two sets are equal if and only if they have the same elements. A=B iff $\forall x(x \in A \leftrightarrow x \in B)$ $\blacksquare A = \{1, 3, 5, 7\}$ $\blacksquare B = \{7, 3, 1, 5\}$ $\blacksquare A=B$

Venn diagram

7

- Sets can be represented graphically using Venn diagrams, named after the English mathematician John Venn
- In Venn diagrams the universal set U, which contains all the objects under consideration, is represented by a rectangle.
- Circles or other geometrical figures are used to represent sets.

Example of Venn diagram

Draw a Venn diagram that represents U, the set of vowels in the English alphabet.

Lecture 8

Subset

9

- Definition 4: The set A is a subset of B if and only if every element of A is also an element of B. $A \subseteq B$ iff $\forall x(x \in A \rightarrow x \in B)$
- Theorem 1: For every set S,
 - $(1) \boxtimes \subseteq S$
 - (2) $S \subseteq S$.

Proper Subset

When we wish to emphasize that a set A is a subset of the set B but that A ≠ B, we write A ⊂ B and say that A is a proper subset of B. For A ⊂ B to be true, it must be the case that A ⊆ B and there must exist an element x of B that is not an element of A. That is, A is a proper subset of B if

 $\forall x(x \in A \to x \in B) \land \exists x(x \in B \land x \notin A)$

12 Equality of Sets

■ If A \subseteq B and B \subseteq A, then A=B

Sets may have other sets as members

 $\blacksquare A = \{ \emptyset, \{a\}, \{b\}, \{a,b\} \}$

 $B = \{x | x \text{ is a subset of the set } \{a, b\}\}$

►A=B

Lecture 8

Cardinality of Set

If there are exactly n distinct members in the set S (n is a nonnegative integer), we say that S is a finite set and that n is the cardinality of S.

 $|\mathbf{S}| = \mathbf{n}$ $|\emptyset| = 0$

For Example

Let A be the set of odd positive integers less than 10. Then |A| = 5.

Infinite Set

A set is said to be infinite if it is not finite.

For Example

The set of positive integers is infinite.

 \mathbf{Z}^+

Power Set

- Definition 7: The *power set* of S is the set of all subset of the set S. *P(S) P({0,1,2})*
- The power set P ({ O, 1, 2 }) is the set of all subsets of {0, 1, 2 }. Hence,
- ► P ({0, 1, 2}) = {Ø, {0}, {1}, {2}, {0, 1}, {0,2}, {1, 2}, {0, 1, 2}.

16

Power Set

What is the power set of the empty set? $P(\emptyset) = \{\emptyset\}$ What is the power set of the set $\{\emptyset\}$? $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}$

If a set has n elements, then its subset has 2ⁿ elements.

17 Cartesian Products

- Ordered n-tuple (a₁, a₂, ..., a_n) is the ordered collection that has a_i as its *i*th element for *i*=1, 2, ..., n.
 - Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.
 - $A \times B = \{(a, b) | a \in A \land b \in B\}$
 - $\blacksquare E.g. A = \{1, 2\}, B = \{a, b, c\}$

 $\blacksquare A \times B$ and $B \times A$ are not equal, unless $A = \emptyset$ or $B = \emptyset$ or A = B

Set Operations: Union

18

Definition 1: The *union* of the sets A and B, denoted by $A \cup B$, is the set containing those elements that are either in A or in B, or in both.

 $\blacksquare A \cup B = \{x | x \in A \lor x \in B\}$

The union of the sets { 1, 3, 5 } and { 1, 2, 3 } is the set { 1, 2, 3, 5 }; that is,

 $\{1, 3, 5\} \cup \{1, 2, 3\} = \{1, 2, 3, 5\}.$

Set Operations: Intersection

Definition 2: The *intersection* of the sets A and B, denoted by $A \cap B$, is the set containing those elements in both A and B.

 $\blacksquare A \cap B = \{x | x \in A \land x \in B\}$

19

The intersection of the sets { I, 3, 5 } and { I, 2, 3 } is the set { I, 3 } ; that is, { I, 3, 5 } n { 1, 2, 3 } ={ I, 3 }

20 Set Operations: Disjoint

Definition 3: Two sets are *disjoint* if their intersection is the empty set.

Let $A = \{I, 3, 5, 7, 9\}$ and $B = \{2, 4, 6, 8, 10\}$ Because $A \cap B = \emptyset$, A and B are disjoint.

Set Operations: Principle of inclusion-exclusion

$|\mathbf{A} \cup \mathbf{B}| = |\mathbf{A}| + |\mathbf{B}| - |\mathbf{A} \cap \mathbf{B}|$

21

Principle of inclusion-exclusion

22 Set Operations: Difference

Definition 4: The *difference* of the sets *A* and *B*, denoted by *A*-*B*, is the set containing those elements that are in *A* but not in *B*.
 Complement of B with respect to A

 $\blacksquare A - B = \{ x | x \in A \land x \notin B \}$

23 Set Operations: Complement

Definition 5: Let U be the universal set. The complement of the set A, denoted by Ā, is the complement of A with respect to U.

 $\bullet \bar{A} = \{ x | x \not\in A \}$

	Identity	Name
24	$\begin{array}{l} A \cup \varnothing = A \\ A \cap U = A \end{array}$	Identity laws
	$\begin{array}{l} A \cup U = U \\ A \cap \varnothing = \varnothing \end{array}$	Domination laws
Set	$A \cup A = A$ $A \cap A = A$	Idempotent laws
Identities	$\overline{(\overline{A})} = A$	Complementation law
	$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive laws
	$\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$ $\overline{\overline{A \cap B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$	De Morgan's laws
	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
	$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Lecture 8

25 Computer Representation of Sets

- The operations of computing the union, intersection, or difference of two sets would be time-consuming, because each of these operations would require a large amount of searching for elements
 - We will present a method for storing elements using an arbitrary ordering of the elements of the universal set.
- This method of representing sets makes computing combinations of sets easy.

Computer Representation of Sets

- Assume that the universal set U is finite(Fits in Computer Memory)
- First, specify an arbitrary ordering of the elements of U,
 for instance a₁, a₂, ..., a_n. Represent a subset A of U
 with the bit string of length n
- The ith bit in this string is 1 if a_i belongs to A and is 0 if a_i does not belong to A.
- See Example

26

Computer Representation of Sets 27 Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, and the ordering of elements of U has the elements in increasing order; that is, a_i = i. What bit strings represent the subset of all odd integers in U, the subset of all even integers in U, and the subset of integers not exceeding 5 in U? The bit string that represents the set of odd integers in U, namely, { I, 3, 5, 7, 9}, has a one bit in the first, third, fifth, seventh, and ninth positions, and a zero elsewhere. It is

-101010101010.

28 Computer Representation of Sets

Similarly, we represent the subset of all even integers in U, namely, {2, 4, 6, 8, 1 0}, by the string

0101010101

The set of all integers in U that do not exceed 5, namely,

{1,2,3,4,5}, is represented by the string

1 1 1 1 1 0 0 0 0 0.