Discrete Mathematics

CMP-101

Lecture 9
Functions, One-to-One and On-to Functions, Inverse
Functions, Compositions of Functions

Abdul Hameed

http://informationtechnology.pk/abdul.hameed@pucit.edu.pk

1

Functions

- In many instances we assign to each element of a set a particular element of a second set
- For example, suppose that each student in a discrete mathematics class is assigned a letter grade from the set { A , B , C , D , F } . And suppose that the grades are A for Adams, C for Chou, B for Goodfriend, A for Rodriguez, and F for Stevens.

Assignment of Grades in a Discrete Mathematics Class.

4 Functions

- In discrete mathematics functions are used in the definition of such discrete structures as sequences and strings.
- Functions are also used to represent how long it takes a
 computer to solve problems of a given size
- Many computer programs and subroutines are designed to calculate values of functions

Definition 1:

- A function f from A to B is an assignment of exactly one element of B to each element of A.
- $= f: A \rightarrow B$

Remark: Functions are sometimes also called mappings or transformations.

FIGURE 2 The Function f Maps A to B.

A Word:

- A function $f: A \rightarrow B$ can also be defined in terms of a relation from A to B.
- A relation from A to B is just a subset of A x B.
- A relation from A to B that contains one, and only one, ordered pair (a, b) for every element a ∈ A, defines a function f from A to B.
- This function is defined by the assignment f(a) = b, where (a,b) is the unique ordered pair in the relation that has a as its first element.

8

Some Important Definitions:

- If f is a function from A to B
 - \blacksquare A: domain of f
 - \blacksquare *B*: *codomain* of *f*
 - -f(a)=b, a: preimage of b, b: image of a
 - Range of f: the set of all images of elements of A
 - If f is a function from A to B, we say that f maps A to B.

Example

What are the domain, codomain, and range of the function that assigns grades to students.

Assignment of Grades in a Discrete Mathematics Class.

10 Solution

- Let G be the function that assigns a grade to a student
- The domain of G is the set {Adams, Chou, Goodfriend, Rodriguez, Stevens}
- Codomain is the set {A, B, C, D, F}
- The range of G is the set {A, B, C, F}

Example

- Let $f: \mathbb{Z} \to \mathbb{Z}$ assign the square of an integer to this integer.
- $f(x) = x^2$, where the domain of f is the set of all integers, we take the codomain of f to be the set of all integers, and the range of f is the set of all integers that are perfect squares, namely, $\{0,1,4,9,\dots\}$

Sum and Product of Functions

Let f_1 and f_2 be functions from A to **R**. f_1+f_2 and f_1f_2 are also functions from A to

- $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ $(f_1 f_2)(x) = f_1(x) f_2(x)$

Example

Let f_1 and f_2 be functions from **R** to **R** such that $f_1(x) = x^2$ and $f_2(x) = x - x^2$ What are the functions $f_1 + f_2$ and $f_1 f_2$?

Solution: From the definition of the sum and product of functions, it follows that

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x - x^2) = x$$

and

$$(f_1 f_2)(x) = x^2(x - x^2) = x^3 - x^4.$$

Definition 4:

- $f: A \rightarrow B$, S is a subset of A. The image of S under the function f is:
- $f(S) = \{ f(s) | s \in S \}$

Let
$$A = \{a, b, c, d, e\}$$
 and $B = \{1, 2, 3, 4\}$
 $f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, f(e) = 1$.
The image of the subset $S = \{b,c,d\}$ is the set $f(S) = \{1, 4\}$

One-to-One Function

- A function f is one-to-one or injective, iff f(a)=f(b) implies that a=b for all a and b in the domain of f.

Example of One-to-One Function

Determine whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.

The function f is one-to-one because f takes on different values at the four elements of its domain.

© The McGraw-Hill Companies, Inc. all rights reserved.

A One-to-One Function.

Example of One-to-One Function

- Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.
- The function $f(x) = x^2$ is not one-to-one because, for instance,
- f(1) = f(-1) = 1, but $1 \neq -1$

On-to Function

- A function f is onto or surjective, iff for every element $b \in B$ there is an element $a \in A$ with f(a) = b.
 - $\forall y \exists x (f(x) = y) or$
 - $\blacksquare \forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$

Example

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

21

Example

Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

The function f is not onto because there is no integer x with $x^2 = -1$, for instance

22

Examples of Different Types of Correspondences.

Inverse Functions

Let f be a one-to-one correspondence from A to B. The inverse function of f is the function that assigns to an element b in B the unique element a in A such that f(a)=b.

 $-f^{-1}(b)=a$ when f(a)=b

Invertible

invertible because we can define an inverse of this function. A function is **not invertible** if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

The composition of functions

■ Let g be a function from A to B, and f be a function from B to C. The composition of functions f and g, denoted by f o g, is defined by:

- fog(a) = f(g(a))
- $-f \circ g$ and $g \circ f$ are not equal

The Composition of the Functions *f* and *g*

A Word:

Note that the composition f o g cannot be defined unless the range of g is a subset of the domain of f

Example

- Let g be the function from the set $\{a, b, c\}$ to itself such that g(a) = b, g(b) = c, and g(c) = a. Let f be the function from the set $\{a, b, c\}$ to the set $\{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1. What is the composition of f and g, and what is the composition of g and f?
- The composition f o g is defined by (f o g)(a) = f(g(a)) = f(b)= 2, (f o g) (b) = f(g(b)) = f(c) = 1, and f(c)= 1 = 3.
- Note that g o f is not defined, because the range of f is not a subset of the domain of g.